Biorheology is an international interdisciplinary journal that publishes research on the deformation and flow properties of biological systems or materials. It is the aim of the editors and publishers of Biorheology to bring together contributions from those working in various fields of biorheological research from all over the world. Members of the editorial board and the advisory board work in different areas of biorheology in several countries where appreciable research activity in this field is being carried out.The aim of biorheological research is to determine and characterize the dynamics of physiological processes at all levels of organization. Manuscripts should report original theoretical and/or experimental research promoting the scientific and technological advances in a broad field that ranges from the rheology of macromolecules and macromolecular arrays to cell, tissue and organ rheology. In all these areas, the interrelationships of rheological properties of the systems or materials investigated and their structural and functional aspects are stressed.The scope of papers solicited by Biorheology extends to systems at different levels of organization that have never been studied before, or, if studied previously, have either never been analyzed in terms of their rheological properties or have not been studied from the point of view of the rheological matching between their structural and functional properties. This biorheological approach applies in particular to molecular studies where changes of physical properties and conformation are investigated without reference to how the process actually takes place, how the forces generated are matched to the properties of the structures and environment concerned, proper time scales, or what structures or strength of structures are required.Biorheology invites papers in which such 'molecular biorheological' aspects, whether in animal or plant systems, are examined and discussed. While we emphasize the biorheology of physiological function in organs and systems, the biorheology of disease is of equal interest. Biorheological analyses of pathological processes and their clinical implications are encouraged, including basic clinical research on hemodynamics and hemorheology.
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
We welcome papers that span disciplines, including papers that focus on the following:
The physical properties and structure of basic molecules that make up living organisms
Pathways, chains of reactions and interactions between molecules in living processes
Genetic processes
Biological networks
The components, processes, and interactions of cells
Developmental and evolutionary processes in cells
Organisms
Physiological systems and clinical/medical science
Technology
Biosensors & Bioelectronics is the principal international journal devoted to research, design, development and application of biosensors and bioelectronics. It is an interdisciplinary journal serving professionals with an interest in the exploitation of biological materials and designs in novel diagnostic and electronic devices including sensors, DNA chips, electronic noses, lab-on-a-chip and µ-TAS.Biosensors are defined as analytical devices incorporating a biological material (e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, natural products etc.), a biologically derived material (e.g. recombinant antibodies, engineered proteins, aptamers etc) or a biomimic (e.g. synthetic receptors, biomimetic catalysts, combinatorial ligands, imprinted polymers etc) intimately associated with or integrated within a physicochemical transducer or transducing microsystem, which may be optical, electrochemical, thermometric, piezoelectric, magnetic or micromechanical (Turner et al., 1987; Turner, 1989). Biosensors usually yield a digital electronic signal which is proportional to the concentration of a specific analyte or group of analytes. While the signal may in principle be continuous, devices can be configured to yield single measurements to meet specific market requirements. Examples of Biosensors include immunosensors, enzyme-based biosensors, organism- and whole cell-based biosensors. They have been applied to a wide variety of analytical problems including uses in medicine, biomedical research, drug discovery, the environment, food, process industries, security and defence. The design and study of molecular and supramolecular structures with molecular biorecognition and biomimetic properties for use in analytical devices is also included within the scope of the journal. Here the focus is on the complementary intersection between molecular recognition, nanotechnology, molecular imprinting and supramolecular chemistry to improve the analytical performance and robustness of devices.The emerging field of Bioelectronics seeks to exploit biology in conjunction with electronics in a wider context encompassing, for example, biological fuel cells, bionics and biomaterials for information processing, information storage, electronic components and actuators. A key aspect is the interface between biological materials and micro- and nano-electronics.While endeavouring to maintain coherence in the scope of the journal, the editors will accept reviews and papers of obvious relevance to the community, which describe important new concepts, underpin understanding of the field or provide important insights into the practical application, manufacture and commercialisation of biosensors and bioelectronics.